It is a fluid phase, since the shear modulus and the Young's modulus vanish due to the dissociation of Dislocation. It is an anisotropic phase, since there exists a director field with sixfold symmetry. The existence of the director field implies that an elastic modulus against drilling or torsion exists within the plane, that is usually called Frank's constant after Charles Frank in analogy to liquid crystals. The ensemble becomes an isotropic liquid (and Frank's constant becomes zero) after the dissociation of Disclination at a higher temperature (or lower density). Therefore, the hexatic phase contains dislocations but no disclinations.
The KTHNY theory of two-step melting by i) destroying positional order and ii) destroying orientational order was developed by John Michael Kosterlitz, David J. Thouless, Bertrand Halperin, David Robert Nelson and A. P. Young in theoretical studies about topological defect unbinding two dimensions. In 2016, Kosterlitz and Thouless were awarded with the Nobel Prize in Physics (together with Duncan Haldane) for the idea that melting in 2D is mediated by topological defects. The hexatic phase was predicted by D. Nelson and B. Halperin; it does not have a strict analogue in three dimensions.
no defects |
dislocations |
dislocations and disclinations |
The vector points to a lattice site within the crystal, where the atom is allowed to fluctuate with an amplitude by thermal motion. is a reciprocal vector in Fourier space. The brackets denote a statistical average about all pairs of atoms with distance R.
The translational correlation function decays fast, i. e. exponential, in the hexatic phase. In a 2D crystal, the translational order is quasi-long range and the correlation function decays rather slow, i. e. algebraic; It is not perfect long range, as in three dimensions, since the displacements diverge logarithmically with systems size at temperatures above T=0 due to the Mermin-Wagner theorem.
A disadvantage of the translational correlation function is, that it is strictly spoken only well defined within the crystal. In the isotropic fluid, at the latest, disclinations are present and the reciprocal lattice vector is not defined any more.
is a complex number of magnitude and the orientation of the six-folded director is given by the phase. In a hexagonal crystal, this is nothing else but the crystal-axes. The local director field disappears for a particle with five or seven nearest neighbours, as given by dislocations and disclinations , except a small contribution due to thermal motion. The orientational correlation function between two particles i and k at distance is now defined using the local director field:
|
|